

Specification for

Model : DDL

Revised : Apr. 09. 2012 Original Release Date : May. 19. 2008

OPHIT

A4(210X297mm)

Revision History

Version Number	Revision Date	Author	Description of Changes
1.0	May 19, 2008	J.H Lee	Initial Version
1.1	June 30, 2008	J.H Lee	Optical SPEC Added
1.2	Apr 09, 2012	J.H Lee	Ordering Information Removed

DDL

TABLE OF CONTENTS

- **1. General Description**
- 2. General Specification
- 3. Absolute Maximum Ratings

4. Electrical & Optical Specification

- 4.1 Electrical Specification
 - 4.1.1 Transmitter Module
 - 4.1.2 Receiver Module
- 4.2 Optical Specification
 - 4.2.1 Transmitter Characteristics
 - 4.2.2 Receiver Characteristics
- 4.3 Connector Pin Assignment

5. Mechanical Specification

- 5.1 Case Dimension
- 5.2 Cable Information

6. RoHS

DDL

1. General Description

DDL, optical DVI extension module, is designed to let digital flat panel display signal extend over 500 meters away from host based on DVI standard by optical transmission technology. Its small package and pseudo DDC detect function and Self-EDID detect function to use standard LC fiber connector allow users to install and utilize the device conveniently.

- Long distance transmission of digital graphic signal corresponding to T.M.D.S -over 500 meter(1,640ft) by multi-mode glass fiber.
- R, G, B, Clock signals are transmitted separately by multi-mode optical fiber.
- Pseudo-DDC detection function for EDID information. Self detecting function for EDID information. Maximum resolution WUXGA
- Optional external power supply for Transmitter. Automatic power switch is included.

2. General Specification

Deremeter	Symbol					
Parameter	Transmitter	Receiver				
Optical Converter	4 ch 850 nm Multi-mode VCSEL	4 ch GaAs PIN photo Diode				
Input and Output Signal	TMDS Signal(DVI 1.0 standard)	TMDS Signal(DVI 1.0 standard)				
Video Bandwidth	1.65Gbps / Channel					
Module Size	39.5×15.0×70.0 mm(W×H×D)					
Module Weight	45g	45g				
Electrical Connector	24 PIN DVI-D Plug(input)	24 PIN DVI-D Plug(output)				
Optical Connector	1×4 LC Connector	1×4 LC Connector				
Recommended Fiber	50/125 µm Multi-mode glass-fiber					

3. Absolute Maximum Ratings

Parameter	Rating			
Storage temperature	-20°C ~ +70°C			
Operating temperature	0°C ~ +50°C			
Power Supply	-0.3 ~ 5.5 V			
Relative Humidity	10 ~ 80 %			
Lead-free solder temperature	260°C, 10 seconds			

NOTICE

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operations section for extended periods of time may affect reliability.

4. Electrical & Optical Specification

- 4.1 Electrical Specification
- 4.1.1 Transmitter Module

	Parameter	Symbol	Min	Тур	Мах	Units	Condition
P O	Supply Voltage (Option External Power)	Vcc	+4.5	+5.0	+5.5	V	
W E	Supply Current	lcc		130	200	mA	
R	Power Dissipation	Po		0.65	1.0	W	
	Reference voltage for graphic signal	Vref	+3.1	+3.3	+3.5	V	
	Single-ended high level input voltage	VH	Vref-0.01		Vref+0.01	V	
T M	Single-ended low level input voltage	VL	Vref-0.6		Vref-0.4	V	
D S	Single-ended input swing voltage	Vswing	0.4		0.6	V	
	Single-ended standby input voltage		Vref-0.01		Vref+0.01	V	
	Data Output Load	RLD		50		Ohms	

4.1.2 Receiver Module

	Parameter	Symbol	Min	Тур	Max	Units	Condition
P O	Supply Voltage (External Power)	Vcc	+4.5	+5.0	+5.5	V	
WE	Supply Current	lcc		230		mA	
R	Power Dissipation	Po		1.15		W	
т	Reference voltage for graphic signal	Vref	+3.1	+3.3	+3.5	V	
M D	Single-ended output swing voltage	Voswing	0.4		0.6	V	AC couple
S	Data Input Load	RLD		50		Ohms	

DDL

4.2 Optical Specification

4.2.1 Transmitter Characteristics

VCSEL Parameters	Test Condition	Symbol	Min.	Typ.	Max.	Units	Notes
Average Fiber Coupled	$I_F = 7mA$	P _{oc}		0.500		mW	2
Power							
Minimum coupling	$I_F = 7 m A$		55			%	
efficiency including							
wiggle							
Threshold Current		I TH	0.5	1.8	2.5	mA	
Threshold Current	$TA = 0^{\circ}C$ to $70^{\circ}C$	$\Delta I_{_{TH}}$	-0.5		1	mA	3
maximum deviation from 25° C value	$TA = 25^{\circ}C$ to $85^{\circ}C$	$\Delta I_{_{TH}}$			1.7	mA	3
	$TA = -40^{\circ}C$ to $25^{\circ}C$	$\Delta I_{_{TH}}$			2.5	mA	3
Temperature at minimum		T _o	-20		50	°C	3
threshold current							
Slope Efficiency	$TA = 25^{\circ}C$	ŋ	0.25		0.8	mW/mA	4,5
Slope Efficiency	$TA = 0^{\circ}C$ to $70^{\circ}C$	$\Delta \eta / \Delta T$		-6000		ppm/ °C	6
Temperature variation							
Peak Wavelength	$I_F = 7 m A$,	$\lambda_{\mathbf{p}}$	830	850	860	nm	
	$TA = 0^{\circ}C$ to $85^{\circ}C$						
$\lambda_{\mathbf{p}}$ Temperature Variation	$I_F = 7 m A$,	$\Delta \lambda_{\rm P} / \Delta T$		0.06		nm/°C	
	$TA = -40^{\circ}C$ to $85^{\circ}C$						
Spectral Bandwidth, RMS	$I_F = 7mA$	Δλ			0.65	nm	
Laser Forward Voltage	$I_F = 7 m A$	V _F		1.8	2.0	v	
Rise and Fall Times	Pavg = 0.625 mW,	t r			130	ps	7
	Extinction Ratio = 10	t f			150		
Relative Intensity Noise	1 GHz BW, IF = 7mA	RIN		-130	-122	dB/Hz	
Series Resistance	$I_F = 7 mA$, $T_A = 25 c$	R _s	25	35	50	Ω	
	$TA = -40^{\circ}C$	R _s	60	Ω			
	$TA = 85^{\circ}C$	R _s	20	Ω			
Series Resistance	$I_F = 7 m A$,	$\Delta R_s / \Delta T$		-3000		ppm/ °C	8
Temperature Coefficient	$TA = 0^{\circ}C$ to $70^{\circ}C$						

Notes 1:

- 2) For the purpose of these tests, I_E is DC current.
- 3) Threshold current varies as $(T_A T_O)^2$. It may either increase or decrease with temperature, depending upon

relationship of T_A to T_O . The magnitude of the change is proportional to the threshold at T_O .

4) Slope efficiency is defined as $\Delta P_0 / \Delta I_E$.

5) Product is sorted into 3 bins based on slope efficiency at 25 $^{\circ}$ C as follows:

Bin 1: 0.25 min, 0.4 max

Bin 2: 0.4 min, 0.6 max

Bin 3: 0.6 min, 0.8 max

6) To compute the value of Slope Efficiency at a temperature T, use the following equation:

 $\eta(T) \approx \eta(25^{\circ}C)*[1+(\Delta\eta/\Delta T)*(T-25)]$

7) Rise and fall times specifications are the 20% - 80%. Most of the devices will measure <135ps fall time. Rise and fall times are sensitive to drive electronics.

8) To compute the value of Series Resistance at a temperature T, use the following equation:

Notes 2:

Transmitter module of Model DDL includes 4 channel VCSEL(Vertical Surface Emitting Laser Diode) with 850 nm invisible laser radiation.

Do not view directly laser module of transmitter or the end of the other side of optical cable connected to transmitter with optical instrument.

Transmitter module of DDL is Class 1 Laser Product.

4.2.2 Receiver Characteristics

Parameters	Test Condition	Symbol	Min.	Тур.	Max.	Units	Notes
Data Rate		DR	0.15		4.25	Gbps	
Supply Voltage			3.0	3.3	3.6	v	
Supply Current	PR = 0μ W, R L= 50Ω AC coupled	Icc		30	45	mA	1
Optical Return Loss	PR =-12dBm	ORL	12			dB	1
Input Optical Wavelength	put Optical Wavelength 0oC to 70oC		770	850	870	nm	
Maximum Average Input		Рмах	0	+3		dBm	
Power before Overload							
Differential Output PR,OMA = -12Bm,		V o(pk-pk)	100	150	220	mV	1,2
Voltage Swing AC Coupled to R L=50Ω							
Differential PR,OMA = -12dBm,		Т	1500	2500	3500	V/W	1,2
Transimpedance AC Coupled to R L=50Ω							
-3dB Optical/Electrical	PR,OMA =-12dBm	BW	2		4	GHz	1,2,3
Bandwidth							
Low Frequency –3dB PR,OMA =-12dBm		BW LF			10	KHz	
Cutoff							
Output Impedance		Zout	42	50	58	Ω	
Output Return Loss	F<3GHz	S 22	8	12		dB	
RMS Input Referred	3.2GHz, 4 -pole BT Filter,	NEP			20	μW, OMA	4
Noise Equivalent Power	PR=0uW (Dark), BER 10^ -12						
Sensitivity, OMA	DR = 1.0625, 1.25Gbps	S		-20	-17	dBm	5
	DR = 2.125, 2.5Gbps			-19	-16		
	DR = 3.125Gbps			-18	-16	-	
	DR = 4.25Gbps	1		-18	-15.5		
Stressed Sensitivity, OMA	DR = 1.0625, 1.25Gbps	SStressed		-17	-14	dBm	5,6
	DR = 2.125, 2.5Gbps			-16	-13	-	
	DR = 3.125Gbps			-14	-11	-	
	DR = 4.25Gbps			-14	-10.5	-	
Rise/Fall Time	PR,OMA =-12dBm, (20%-80%)	TR/TF		80	120	ps	2,7
Pulse Width Distortion		PWD			5	%	
Power Supply Rejection	PR =0µW (Dark),	PSRR	20			dB	1,8
Ratio	5MHz <f<2ghz< td=""><td></td><td></td><td></td><td></td><td></td><td></td></f<2ghz<>						

DDL

Monitor Current Slope	PR =-12dBm	IMON	0.45	0.5	0.55	A/W	9
Monitor Current Offset	PR =0mW	IOFFSET			10	nA	
PD Bias Voltage		PDBIAS	Vcc -1	Vcc	Vcc+0.5	V	13
Group Delay	PR,OMA = -12dBm, AC Coupled to R L=50Ω 2MHz <f< 2ghz<="" td=""><td>Delay</td><td>-50</td><td></td><td>50</td><td>ps</td><td>10</td></f<>	Delay	-50		50	ps	10
Deterministic Jitter	PR,OMA = -12dBm, AC Coupled to R L=50Ω	DJTIA		30	40	ps	11
Random Jitter	PR,OMA = -12 dBm, AC Coupled to R L=50 Ω	RJTIA		3	5	ps	12

Notes 3:

1. PR is the average optical power at the fiber face.

2. PR,OMA is the peak to peak optical power at the fiber face (Optical Modulation Amplitude)

where ER is the extinction ratio (linear) of the optical source

$$P_{R,OMA} \equiv \frac{2P_R(ER-1)}{ER+1}$$

3. Bandwidth and Low Frequency Cutoff are measured with a small signal sinusoidal light source with -12dBm average power

4. RMS input referred optical noise equivalent power is obtained by measuring the RMS output noise into a 1875 MHz, 4-pole Bessel-Thompson filter then dividing by the responsivity. A scaling factor of 14 is used to predict a BER of 10⁻¹²

5. Sensitivity is measured with an optical source with an extinction ratio of 3dB.

Stressed receiver sensitivity is measured with 3.5dB
vertical eye closure (intersymbol interference) and with
0.3UI of jitter added. The measurement technique is
defined in IEEE 802.3ae.

7. Rise/Fall times are corrected for optical source Rise/Fall times. $T^{2}_{TIA} = T^{2}_{MEASURED} - T^{2}_{OPTICAL}$

8. Value shown is with no external power supply filtering.

9. The monitor current slope is measured as the current into the PDBIAS connection.

10. Group delay is a sensitive measurement to package interface, and includes the effects of PD, TIA and package. Measurement is made with TO leads as short as possible. 11. DJTIA is specified as contributed DJ by the TIA, obtained from $DF_{TIA} = DJ^{2}_{TOTAL} - DJ^{2}_{OPTICAL}$ 12. RJTIA is specified as contributed DJ by the TIA, obtained

from RJ²TIA = RJ²TOTAL - RJ²OPTICAL

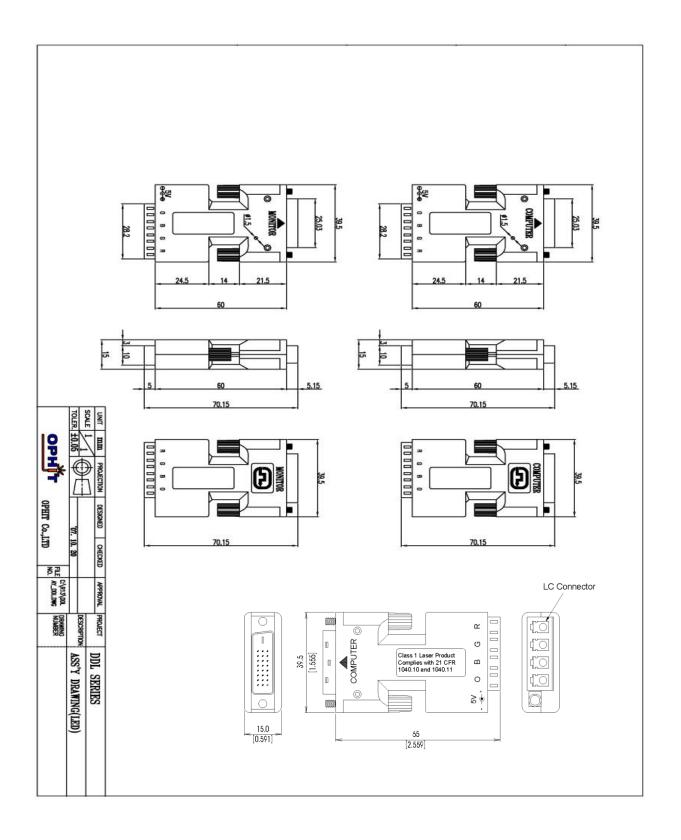
13. If external bias voltage is applied to VPD while Vcc is externally unbiased, internal biasing of the TIA will occur, resulting in erroneous RSSI current.

4.3 Connector Pin Assignment

Transmitter

Pin	Signal Assignment	Pin	Signal Assignment	Pin	Signal Assignment
1	T.M.D.S. Data2-	9	T.M.D.S. Data1-	17	T.M.D.S. Data0-
2	T.M.D.S. Data2+	10	T.M.D.S. Data1+	18	T.M.D.S. Data0+
3	T.M.D.S. Data2 Shield	11	T.M.D.S. Data1 Shield	19	T.M.D.S. Data0 Shield
4	No Connect	12	No Connect	20	No Connect
5	No Connect	13	No Connect	21	No Connect
6	DDC Clock (Only TX)	14	+5V Power	22	T.M.D.S Clock Shield
7	DDC Data (Only TX)	15	Ground (for +5V)	23	T.M.D.S Clock+
8	No Connect	16	No Connect	24	T.M.D.S Clock-

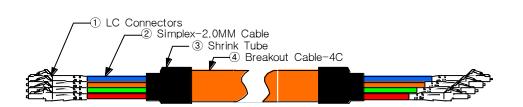
Receiver

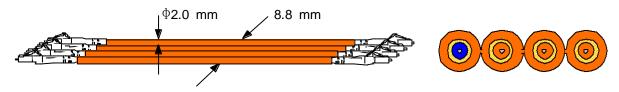

Pin	Signal Assignment	Pin	Signal Assignment	Pin	Signal Assignment
1	T.M.D.S. Data2-	9	T.M.D.S. Data1-	17	T.M.D.S. Data0-
2	T.M.D.S. Data2+	10	T.M.D.S. Data1+	18	T.M.D.S. Data0+
3	T.M.D.S. Data2 Shield	11	T.M.D.S. Data1 Shield	19	T.M.D.S. Data0 Shield
4	No Connect	12	No Connect	20	No Connect
5	No Connect	13	No Connect	21	No Connect
6	No Connect	14	Out +5V Power	22	T.M.D.S Clock Shield
7	No Connect	15	Ground (for Out +5V)	23	T.M.D.S Clock+
8	No Connect	16	No Connect	24	T.M.D.S Clock-

DDL

5. Mechanical Specification

5.1 Case Dimension




DDL

5.2 Cable Information

Outdoor Cable

Indoor Cable

Specifications, configurations, and availability are subject to change without notice.

6. RoHS

Certificate of Conformance RoHS

Dear Customer,

On January 27, 2003, the European Parliament and the Adminstrative Council adopted Directive 2002/95/EC (RoHS) that concerns the "Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment".

The parts currently delivered by **OPHIT CO., LTD.** are already free of lead (Pb), mercury (Hg), cadmium (Cd), hexavalent chromium (Cr⁶⁺), polybrominated biphenyl (PBB) and polybrominated diphenyl (PBDE).

This Certification of Conformance is to certify that the products listed below comply with RoHS Directive mentioned above:

• DDL

If you have any further questions regarding the RoHS compliance of parts delivered by **OPHIT CO., LTD.**, please do not hesitate to contact us at **support@ophit.com**.

Best regards,

JONG-KOOK MOON/CEO

OPHIT CO., LTD.